Frequently Asked Questions¶
Common questions and answers about the MCP Template Platform.
General Questions¶
What is the MCP Template Platform?¶
The MCP Template Platform is a comprehensive system for deploying and managing Model Context Protocol (MCP) servers. It provides pre-built templates for common integrations, a CLI tool for easy deployment, and tools for creating custom MCP servers.
Key Benefits: - 🚀 One-command deployment of MCP servers - 📦 Pre-built templates for popular services - 🔧 Template creation tools for custom integrations - 🐳 Docker-based for consistent deployments - 🔍 Automatic tool discovery using MCP protocol
How does it relate to the Model Context Protocol?¶
The platform implements the official Model Context Protocol specification. It provides:
- MCP Server Templates: Pre-configured servers that expose tools via MCP
- Protocol Implementation: Full MCP 2025-06-18 specification support
- Tool Discovery: Automatic detection of available MCP tools
- Client Integration: Ready-to-use configurations for LLM clients
Is this officially associated with Anthropic?¶
No, this is an independent open-source project that implements the MCP specification. While it follows the official MCP protocol, it's not developed or endorsed by Anthropic.
Getting Started¶
What are the system requirements?¶
Minimum Requirements: - Python 3.8+ - Docker 20.10+ - 2GB RAM - 10GB disk space
Recommended: - Python 3.11+ - Docker 24.0+ - 4GB RAM - 20GB disk space
Operating System Support: - ✅ Linux (all distributions) - ✅ macOS 10.15+ - ✅ Windows 10+ (with WSL2)
How do I install the platform?¶
# Install from PyPI
pip install mcp-templates
# Verify installation
mcp-template --version
# Test with demo template
mcp-template deploy demo
See the Installation Guide for detailed instructions.
What templates are available?¶
Popular Templates: - file-server: Secure filesystem access - demo: Basic demonstration server - github: GitHub API integration - database: SQL database connectivity
Full List:
View detailed information in the Template Library.
Template Usage¶
How do I deploy a template?¶
# Basic deployment
mcp-template deploy template-name
# With configuration
mcp-template deploy file-server --config base_path=/home/user/documents
# With config file
mcp-template deploy database --config-file db-config.json
How do I configure templates?¶
Three ways to configure templates:
-
Command-line options:
-
Configuration file:
-
Environment variables:
Configuration precedence: Environment Variables > CLI Options > Config File > Template Defaults
How do I connect templates to AI assistants?¶
Claude Desktop:
# Generate configuration
mcp-template connect template-name --llm claude
# Add to Claude Desktop config
# (~/.config/claude-desktop/claude_desktop_config.json)
VS Code:
Custom Integration:
How do I see what tools are available?¶
# List tools in a template
mcp-template tools template-name
# Discover tools from any MCP server
mcp-template tools --image custom/mcp-server
# Get detailed tool information
mcp-template tools template-name --detailed
Template Development¶
How do I create a custom template?¶
Interactive Creation:
From Existing Image:
Manual Creation: See the Template Development Guide for detailed instructions.
What files does a template need?¶
Required Files:
templates/my-template/
├── template.json # Template metadata and configuration schema
├── Dockerfile # Container build instructions
└── README.md # Documentation (recommended)
Recommended Structure:
templates/my-template/
├── template.json # Template configuration
├── Dockerfile # Container definition
├── README.md # Template documentation
├── src/ # Source code
│ ├── server.py # MCP server implementation
│ └── tools.py # Tool implementations
├── config/ # Configuration examples
├── tests/ # Test suite
└── docs/ # Additional documentation
How do I test my template?¶
# Validate template structure
mcp-template validate my-template
# Deploy for testing
mcp-template deploy my-template
# Test tool discovery
mcp-template tools my-template
# Run template tests
cd templates/my-template
python -m pytest tests/
Can I use languages other than Python?¶
Yes! Templates can use any language that supports the MCP protocol:
Supported Languages: - ✅ Python (FastMCP, mcp-python) - ✅ TypeScript/JavaScript (@modelcontextprotocol/sdk) - ✅ Go (community implementations) - ✅ Rust (community implementations)
The key requirements: 1. Implement MCP JSON-RPC over stdio 2. Support MCP protocol 2025-06-18 3. Containerized with Docker
Deployment & Operations¶
How do I manage multiple deployments?¶
# List all deployments
mcp-template list
# Check deployment status
mcp-template status
# View specific deployment
mcp-template status deployment-name
# Stop deployment
mcp-template stop deployment-name
# Remove deployment
mcp-template delete deployment-name
How do I monitor deployments?¶
# View logs
mcp-template logs deployment-name
# Follow logs in real-time
mcp-template logs deployment-name --follow
# Monitor status continuously
mcp-template status --watch
# Health check only
mcp-template status --health-only
How do I update deployments?¶
# Update to latest image
mcp-template deploy template-name --force-pull
# Force recreate container
mcp-template deploy template-name --force-recreate
# Update with new configuration
mcp-template deploy template-name --config new_setting=value
Where are deployment data and logs stored?¶
Default Locations:
- Data: ~/mcp-data/
(mapped to /data
in container)
- Logs: ~/.mcp/logs/
(mapped to /logs
in container)
- Config: ~/.mcp/config/
Custom Locations:
# Use custom data directory
mcp-template deploy template --volume /custom/path:/data
# Multiple volumes
mcp-template deploy template \
--volume /data1:/app/data1 \
--volume /data2:/app/data2
Troubleshooting¶
My deployment failed to start. What should I check?¶
-
Check logs:
-
Verify Docker:
-
Check configuration:
-
Test image directly:
See the Troubleshooting Guide for comprehensive solutions.
Tools aren't being discovered. Why?¶
Common Causes:
1. MCP server not responding: Check container logs
2. Wrong transport protocol: Try --transport stdio
or --transport http
3. Container startup issues: Verify container is running
4. Configuration errors: Check environment variables
Debugging Steps:
# Test tool discovery directly
mcp-template tools --image template:latest
# Check MCP protocol response
mcp-template connect deployment --test-connection
# Monitor container startup
mcp-template logs deployment --follow
How do I get help with specific issues?¶
- Check Documentation:
- CLI Reference
- Troubleshooting Guide
-
Community Support:
- GitHub Issues: Report bugs and feature requests
- GitHub Discussions: Ask questions and share solutions
-
Community Slack: Join mcp-platform workspace for real-time community chat
-
Professional Support:
- Enterprise support available
- Custom template development services
- Contact: support@dataeverything.ai
Performance & Scaling¶
How many deployments can I run?¶
Typical Limits: - Development: 5-10 deployments per machine - Production: 50+ deployments with proper resource management
Resource Planning: - Each deployment: ~100-500MB RAM - CPU usage: Minimal when idle - Disk: Depends on data volumes
How do I optimize performance?¶
Template Level:
# Set resource limits
mcp-template deploy template --memory 512m --cpu 0.5
# Use efficient base images
# In Dockerfile: FROM python:3.11-slim instead of python:3.11
System Level:
# Clean up unused resources
docker system prune -f
# Monitor resource usage
docker stats
# Use Docker BuildKit for faster builds
export DOCKER_BUILDKIT=1
Can I run this in production?¶
Yes! The platform supports production deployments:
Production Features: - Health Monitoring: Built-in health checks and status monitoring - Logging: Comprehensive logging with rotation - Resource Management: Memory and CPU limits - Security: Container isolation and network security - Backup: Configuration and data backup support
Production Recommendations: - Use Docker Compose or Kubernetes for orchestration - Set up monitoring and alerting - Implement backup strategies - Use resource limits - Regular security updates
Security¶
Is it safe to run MCP servers?¶
The platform follows security best practices:
Security Features: - Container Isolation: Each deployment runs in isolated Docker containers - No Root Access: Containers run as non-root users - Network Isolation: Minimal network exposure - Resource Limits: Prevents resource exhaustion - Secret Management: Environment variable-based configuration
Security Best Practices: - Keep images updated - Use minimal base images - Limit network access - Regular security audits - Secure secret storage
How do I handle sensitive configuration?¶
Environment Variables:
# Use environment variables for secrets
export MCP_API_KEY="secret-key"
mcp-template deploy template
Config Files with Restricted Permissions:
# Create secure config file
echo '{"api_key": "secret"}' > config.json
chmod 600 config.json
mcp-template deploy template --config-file config.json
External Secret Management:
# Use external secret managers
export MCP_API_KEY=$(vault kv get -field=key secret/mcp/api)
mcp-template deploy template
Integration & Compatibility¶
What AI assistants work with this?¶
Officially Supported: - ✅ Claude Desktop (Anthropic) - ✅ VS Code (with MCP extensions) - ✅ Continue.dev - ✅ Custom Python applications
Community Supported: - ⚠️ Other LLM clients (varies by MCP support)
Can I integrate with existing systems?¶
Yes! The platform provides multiple integration options:
API Integration:
from mcp_template import TemplateManager
manager = TemplateManager()
deployment = manager.deploy("template-name", config={"key": "value"})
tools = manager.discover_tools(deployment)
CLI Integration:
Docker Integration:
Does it work with Kubernetes?¶
While primarily designed for Docker, you can adapt for Kubernetes:
Manual Kubernetes Deployment:
apiVersion: apps/v1
kind: Deployment
metadata:
name: mcp-template
spec:
replicas: 1
selector:
matchLabels:
app: mcp-template
template:
metadata:
labels:
app: mcp-template
spec:
containers:
- name: mcp-server
image: template:latest
env:
- name: MCP_CONFIG
value: "production"
Future Support: Kubernetes backend support is planned for future releases.
Contributing¶
How can I contribute to the project?¶
Ways to Contribute: 1. Report Issues: Bug reports and feature requests 2. Create Templates: Share useful MCP server templates 3. Improve Documentation: Fix errors, add examples 4. Code Contributions: Platform improvements and new features 5. Community Support: Help other users in discussions
Getting Started: 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests 5. Submit a pull request
See the Contributing Guide for detailed guidelines.
What templates are most needed?¶
High Priority: - Popular APIs: Stripe, Twilio, SendGrid - Database Connectors: MongoDB, Redis, Elasticsearch - Cloud Services: AWS, Google Cloud, Azure - Development Tools: Jira, Linear, Notion
Template Ideas: - Custom business integrations - Industry-specific tools - Regional service providers - Niche technical tools
How do I submit a new template?¶
-
Create the template:
-
Test thoroughly:
-
Add documentation:
- Complete README.md
- Usage examples
-
Configuration guide
-
Submit pull request:
- Include template in
templates/
directory - Add tests
- Update template registry
Commercial Usage¶
Can I use this commercially?¶
Yes! The MCP Template Platform is open source under the MIT License, which allows commercial use.
Commercial Usage Rights: - ✅ Use in commercial products - ✅ Modify and distribute - ✅ Private use - ✅ Commercial distribution
Requirements: - Include license notice - No warranty provided
Do you offer commercial support?¶
Yes, commercial support is available:
Enterprise Support: - Priority bug fixes - Custom template development - Training and consulting - SLA guarantees
Professional Services: - Custom integration development - Architecture consulting - Team training - Production deployment assistance
Contact: enterprise@dataeverything.ai
Can I create paid templates?¶
While the core platform is open source, you can:
- Create proprietary templates for internal use
- Offer template development services
- Build commercial products using the platform
- Provide support and consulting services
The template ecosystem encourages both open source and commercial contributions.
Still have questions?
- 📖 Check the full documentation
- 💬 Join our community discussions
- 🐛 Report issues
- 📧 Contact us: support@dataeverything.ai