Skip to content

Frequently Asked Questions

Common questions and answers about the MCP Template Platform.

General Questions

What is the MCP Template Platform?

The MCP Template Platform is a comprehensive system for deploying and managing Model Context Protocol (MCP) servers. It provides pre-built templates for common integrations, a CLI tool for easy deployment, and tools for creating custom MCP servers.

Key Benefits: - 🚀 One-command deployment of MCP servers - 📦 Pre-built templates for popular services - 🔧 Template creation tools for custom integrations - 🐳 Docker-based for consistent deployments - 🔍 Automatic tool discovery using MCP protocol

How does it relate to the Model Context Protocol?

The platform implements the official Model Context Protocol specification. It provides:

  • MCP Server Templates: Pre-configured servers that expose tools via MCP
  • Protocol Implementation: Full MCP 2025-06-18 specification support
  • Tool Discovery: Automatic detection of available MCP tools
  • Client Integration: Ready-to-use configurations for LLM clients

Is this officially associated with Anthropic?

No, this is an independent open-source project that implements the MCP specification. While it follows the official MCP protocol, it's not developed or endorsed by Anthropic.

Getting Started

What are the system requirements?

Minimum Requirements: - Python 3.8+ - Docker 20.10+ - 2GB RAM - 10GB disk space

Recommended: - Python 3.11+ - Docker 24.0+ - 4GB RAM - 20GB disk space

Operating System Support: - ✅ Linux (all distributions) - ✅ macOS 10.15+ - ✅ Windows 10+ (with WSL2)

How do I install the platform?

# Install from PyPI
pip install mcp-templates

# Verify installation
mcp-template --version

# Test with demo template
mcp-template deploy demo

See the Installation Guide for detailed instructions.

What templates are available?

Popular Templates: - file-server: Secure filesystem access - demo: Basic demonstration server - github: GitHub API integration - database: SQL database connectivity

Full List:

mcp-template list

View detailed information in the Template Library.

Template Usage

How do I deploy a template?

# Basic deployment
mcp-template deploy template-name

# With configuration
mcp-template deploy file-server --config base_path=/home/user/documents

# With config file
mcp-template deploy database --config-file db-config.json

How do I configure templates?

Three ways to configure templates:

  1. Command-line options:

    mcp-template deploy template --config key=value
    

  2. Configuration file:

    mcp-template deploy template --config-file config.json
    

  3. Environment variables:

    export MCP_API_KEY="your-key"
    mcp-template deploy template
    

Configuration precedence: Environment Variables > CLI Options > Config File > Template Defaults

How do I connect templates to AI assistants?

Claude Desktop:

# Generate configuration
mcp-template connect template-name --llm claude

# Add to Claude Desktop config
# (~/.config/claude-desktop/claude_desktop_config.json)

VS Code:

# Generate VS Code configuration
mcp-template connect template-name --llm vscode

Custom Integration:

# Get JSON configuration
mcp-template tools template-name --format json

How do I see what tools are available?

# List tools in a template
mcp-template tools template-name

# Discover tools from any MCP server
mcp-template tools --image custom/mcp-server

# Get detailed tool information
mcp-template tools template-name --detailed

Template Development

How do I create a custom template?

Interactive Creation:

mcp-template create my-custom-template
# Follow the prompts for configuration

From Existing Image:

mcp-template create --from-image existing/mcp-server my-template

Manual Creation: See the Template Development Guide for detailed instructions.

What files does a template need?

Required Files:

templates/my-template/
├── template.json      # Template metadata and configuration schema
├── Dockerfile         # Container build instructions
└── README.md          # Documentation (recommended)

Recommended Structure:

templates/my-template/
├── template.json      # Template configuration
├── Dockerfile         # Container definition
├── README.md          # Template documentation
├── src/              # Source code
│   ├── server.py     # MCP server implementation
│   └── tools.py      # Tool implementations
├── config/           # Configuration examples
├── tests/            # Test suite
└── docs/             # Additional documentation

How do I test my template?

# Validate template structure
mcp-template validate my-template

# Deploy for testing
mcp-template deploy my-template

# Test tool discovery
mcp-template tools my-template

# Run template tests
cd templates/my-template
python -m pytest tests/

Can I use languages other than Python?

Yes! Templates can use any language that supports the MCP protocol:

Supported Languages: - ✅ Python (FastMCP, mcp-python) - ✅ TypeScript/JavaScript (@modelcontextprotocol/sdk) - ✅ Go (community implementations) - ✅ Rust (community implementations)

The key requirements: 1. Implement MCP JSON-RPC over stdio 2. Support MCP protocol 2025-06-18 3. Containerized with Docker

Deployment & Operations

How do I manage multiple deployments?

# List all deployments
mcp-template list

# Check deployment status
mcp-template status

# View specific deployment
mcp-template status deployment-name

# Stop deployment
mcp-template stop deployment-name

# Remove deployment
mcp-template delete deployment-name

How do I monitor deployments?

# View logs
mcp-template logs deployment-name

# Follow logs in real-time
mcp-template logs deployment-name --follow

# Monitor status continuously
mcp-template status --watch

# Health check only
mcp-template status --health-only

How do I update deployments?

# Update to latest image
mcp-template deploy template-name --force-pull

# Force recreate container
mcp-template deploy template-name --force-recreate

# Update with new configuration
mcp-template deploy template-name --config new_setting=value

Where are deployment data and logs stored?

Default Locations: - Data: ~/mcp-data/ (mapped to /data in container) - Logs: ~/.mcp/logs/ (mapped to /logs in container) - Config: ~/.mcp/config/

Custom Locations:

# Use custom data directory
mcp-template deploy template --volume /custom/path:/data

# Multiple volumes
mcp-template deploy template \
  --volume /data1:/app/data1 \
  --volume /data2:/app/data2

Troubleshooting

My deployment failed to start. What should I check?

  1. Check logs:

    mcp-template logs deployment-name
    

  2. Verify Docker:

    docker --version
    docker info
    

  3. Check configuration:

    mcp-template config template-name
    

  4. Test image directly:

    docker run -it template-image:latest /bin/bash
    

See the Troubleshooting Guide for comprehensive solutions.

Tools aren't being discovered. Why?

Common Causes: 1. MCP server not responding: Check container logs 2. Wrong transport protocol: Try --transport stdio or --transport http 3. Container startup issues: Verify container is running 4. Configuration errors: Check environment variables

Debugging Steps:

# Test tool discovery directly
mcp-template tools --image template:latest

# Check MCP protocol response
mcp-template connect deployment --test-connection

# Monitor container startup
mcp-template logs deployment --follow

How do I get help with specific issues?

  1. Check Documentation:
  2. CLI Reference
  3. Troubleshooting Guide
  4. Template Development Guide

  5. Community Support:

  6. GitHub Issues: Report bugs and feature requests
  7. GitHub Discussions: Ask questions and share solutions
  8. Community Slack: Join mcp-platform workspace for real-time community chat

  9. Professional Support:

  10. Enterprise support available
  11. Custom template development services
  12. Contact: support@dataeverything.ai

Performance & Scaling

How many deployments can I run?

Typical Limits: - Development: 5-10 deployments per machine - Production: 50+ deployments with proper resource management

Resource Planning: - Each deployment: ~100-500MB RAM - CPU usage: Minimal when idle - Disk: Depends on data volumes

How do I optimize performance?

Template Level:

# Set resource limits
mcp-template deploy template --memory 512m --cpu 0.5

# Use efficient base images
# In Dockerfile: FROM python:3.11-slim instead of python:3.11

System Level:

# Clean up unused resources
docker system prune -f

# Monitor resource usage
docker stats

# Use Docker BuildKit for faster builds
export DOCKER_BUILDKIT=1

Can I run this in production?

Yes! The platform supports production deployments:

Production Features: - Health Monitoring: Built-in health checks and status monitoring - Logging: Comprehensive logging with rotation - Resource Management: Memory and CPU limits - Security: Container isolation and network security - Backup: Configuration and data backup support

Production Recommendations: - Use Docker Compose or Kubernetes for orchestration - Set up monitoring and alerting - Implement backup strategies - Use resource limits - Regular security updates

Security

Is it safe to run MCP servers?

The platform follows security best practices:

Security Features: - Container Isolation: Each deployment runs in isolated Docker containers - No Root Access: Containers run as non-root users - Network Isolation: Minimal network exposure - Resource Limits: Prevents resource exhaustion - Secret Management: Environment variable-based configuration

Security Best Practices: - Keep images updated - Use minimal base images - Limit network access - Regular security audits - Secure secret storage

How do I handle sensitive configuration?

Environment Variables:

# Use environment variables for secrets
export MCP_API_KEY="secret-key"
mcp-template deploy template

Config Files with Restricted Permissions:

# Create secure config file
echo '{"api_key": "secret"}' > config.json
chmod 600 config.json
mcp-template deploy template --config-file config.json

External Secret Management:

# Use external secret managers
export MCP_API_KEY=$(vault kv get -field=key secret/mcp/api)
mcp-template deploy template

Integration & Compatibility

What AI assistants work with this?

Officially Supported: - ✅ Claude Desktop (Anthropic) - ✅ VS Code (with MCP extensions) - ✅ Continue.dev - ✅ Custom Python applications

Community Supported: - ⚠️ Other LLM clients (varies by MCP support)

Can I integrate with existing systems?

Yes! The platform provides multiple integration options:

API Integration:

from mcp_template import TemplateManager

manager = TemplateManager()
deployment = manager.deploy("template-name", config={"key": "value"})
tools = manager.discover_tools(deployment)

CLI Integration:

# Scriptable CLI interface
mcp-template deploy template --format json

Docker Integration:

# Direct Docker usage
docker run -d --name mcp-server template:latest

Does it work with Kubernetes?

While primarily designed for Docker, you can adapt for Kubernetes:

Manual Kubernetes Deployment:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: mcp-template
spec:
  replicas: 1
  selector:
    matchLabels:
      app: mcp-template
  template:
    metadata:
      labels:
        app: mcp-template
    spec:
      containers:
      - name: mcp-server
        image: template:latest
        env:
        - name: MCP_CONFIG
          value: "production"

Future Support: Kubernetes backend support is planned for future releases.

Contributing

How can I contribute to the project?

Ways to Contribute: 1. Report Issues: Bug reports and feature requests 2. Create Templates: Share useful MCP server templates 3. Improve Documentation: Fix errors, add examples 4. Code Contributions: Platform improvements and new features 5. Community Support: Help other users in discussions

Getting Started: 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests 5. Submit a pull request

See the Contributing Guide for detailed guidelines.

What templates are most needed?

High Priority: - Popular APIs: Stripe, Twilio, SendGrid - Database Connectors: MongoDB, Redis, Elasticsearch - Cloud Services: AWS, Google Cloud, Azure - Development Tools: Jira, Linear, Notion

Template Ideas: - Custom business integrations - Industry-specific tools - Regional service providers - Niche technical tools

How do I submit a new template?

  1. Create the template:

    mcp-template create my-new-template
    

  2. Test thoroughly:

    mcp-template deploy my-new-template
    mcp-template tools my-new-template
    

  3. Add documentation:

  4. Complete README.md
  5. Usage examples
  6. Configuration guide

  7. Submit pull request:

  8. Include template in templates/ directory
  9. Add tests
  10. Update template registry

Commercial Usage

Can I use this commercially?

Yes! The MCP Template Platform is open source under the MIT License, which allows commercial use.

Commercial Usage Rights: - ✅ Use in commercial products - ✅ Modify and distribute - ✅ Private use - ✅ Commercial distribution

Requirements: - Include license notice - No warranty provided

Do you offer commercial support?

Yes, commercial support is available:

Enterprise Support: - Priority bug fixes - Custom template development - Training and consulting - SLA guarantees

Professional Services: - Custom integration development - Architecture consulting - Team training - Production deployment assistance

Contact: enterprise@dataeverything.ai

Can I create paid templates?

While the core platform is open source, you can:

  • Create proprietary templates for internal use
  • Offer template development services
  • Build commercial products using the platform
  • Provide support and consulting services

The template ecosystem encourages both open source and commercial contributions.


Still have questions?